The fundamental cause for concern with regards to UCG is that the conditions under which the reaction takes place are naturally variable and difficult to know (sometimes unknowable), placing an inherent limitation on process control. This, combined with a number of significant environmental and human health hazards, creates risk. The table below outlines the main hazards associated with UCG.

Hazard	Environmental/health concern	Cause(s)	Example(s)
Inadequate: - site selection - process modelling - monitoring	 Given that the UCG reaction is largely dependent on external factors, site selection, process modelling, monitoring and process control are 	 Inaccessibility of monitoring points (e.g. in marine environments) Inadequate regulatory framework Lack of modelling and data 	All examples to our knowledge have had problems associated with one or more of these aspects.
- process control	crucial to risk mitigation for all of the hazards below.	 Lack of expertise (operator, consultant, regulator) Low maturity of UCG technology, especially for decommissioning and at commercial scale Costs (commercial viability) 	It should be noted that successful decommissioning has yet to be sufficiently proven. This is especially pertinent for commercial scale sites, where control of temperature and pressure gradients in large cavities is more challenging ¹ .
Uncontrollable fire (in shallow coal seams)	- Groundwater/air pollution - Subsidence	 Uncontrolled air/oxygen source to gasification cavity Faults/fractured/subsidence Damaged borehole casings Shallow target coal depth Inadequate monitoring/site selection/process modelling 	No instances found in the literature but this may be from lack of reporting and the short duration of most projects. Analogous experience can be drawn from traditional mining activities.
Subsidence	 New pollutant/air pathways in rock fractures Re-routing surface waters Impacts to shallow aquifers Damaged surface infrastructure 	 Cavity collapse Poor structural integrity of overlying rocks Disturbance of historical coal mines Inadequate monitoring/site selection/process modelling 	 Hoe Creek III, USA² – late 1970s, shallow depth (~50m) trial, subsidence seen at surface.
Induced seismicity	 Groundwater/air pollution New pathways in rock fractures Damaged wells/monitoring boreholes Damaged surface infrastructure Explosion 	 Stresses imposed by the cavity remaining after combustion Cavity collapse Proximity to existing faults Inadequate monitoring/site selection/process modelling 	No instances found in the literature but this may be from lack of reporting or monitoring. Analogous experience can be drawn from traditional mining activities.

Hazard	Environmental/health concern	Cause(s)	Example(s)
Production and mobilisation of pollutants	 Surface and groundwater contamination Toxic organic compounds (e.g. Phenols, PAHs, BTEX) Hazardous inorganic compounds (e.g. ammonia, nitrogen, cyanides) Soluble gases (e.g. hydrogen sulphide, carbon monoxide) NORM 	 Inadequate site selection Inadequate decommissioning Post-decommissioning groundwater flow Inadequate treatment and disposal of produced water Excess cavity/well pressure Inadequate monitoring/ process control Well blockage Uncontrollable fires/explosion Subsidence Damaged to monitoring or production boreholes/wells Thermal/mechanical alteration of surrounding rocks Faults/natural pollutant pathways Intersection of historical mines 	 Hoe Creek I, II & III, USA^{2,3} – late 1970s, 3 shallow depth (~50m) trials, significant long-term groundwater pollution due to over-pressured cavity. Carbon Energy, Bloodwood Creek, Qeensland, Australia – 2008 to present, an injection well blockage caused pressure to spike well above hydrostatic pressure, resulting in the emission of process water through the flare¹.
Gas emissions to atmosphere	 Air pollution Unburned hydrocarbons NOx H₂S and SO₂ CO Particulate matter Climate impacts CO₂ CH₄ 	 Inadequate monitoring/site selection/process modelling Construction emissions Emissions imbedded in materials Flaring Refining/combustion of syngas Venting during start-up Fugitive (escaped) gases due to: Leaking/damaged infrastructure Excess well pressure Underground explosion/faults Well blockage 	 Linc Energy, Chinchilla plant, Queensland, Australia – 2007-2013, workers suffered ill health due to "uncontrolled leaks" of syngas⁴. In 2007, a coal tar blockage caused a chamber fire, Linc Energy increased injection pressure causing well casings and overburden to crack and allow syngas to escape to the surface⁵. Lifecycle climate impacts are estimated (from few studies and limited evidence) to be less carbon intensive than coal but more than natural gas^{6,7}.

Hazard	Environmental/health concern	Cause(s)	Example(s)
Underground	Groundwater/air pollution	- Poor process control	- Experimental Mine "Barbara", Poland –
explosion	 Highly over-pressured cavity 	- Temperatures too high	2013, a 30m deep engineered reactor,
	 New pathways in rock fractures Damaged wells/monitoring boreholes Damaged surface infrastructure Subsidence 	 Too much gasification agent Too slow gas collection Damaged wells Material defect/installation error Induced seismicity 	 cracks developed causing gases to leak and create explosive accumulations, igniting due to high temperatures⁸. El Tremedal, Spain – 1997, 550m deep, explosion of accumulated methane
	- Induced seismicity	- Inadequate monitoring/site selection/process modelling	terminated the trial ⁷ .

1 Independent Scientific Panel report on Underground Coal Gasification in Queensland, Australia

2 Hill RW, Thorsness CB, Cena RJ, Aiman WR and Stephens DR, 1980. Results from the third LLL Underground Coal Gasification Experiment at Hoe Creek. Proceedings of the 6th Underground Coal Conversion Symposium, Shangri-La, OK.

3 US DoE, 1997. US Department of Energy, Environmental assessment, Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County Wyoming, October 1997, DOE/EA-1219.

4 ABC News http://www.abc.net.au/news/2015-03-16/linc-energy-allegedly-exposed-miners-to-dangerous-gases/6322024

5 ABC News http://www.abc.net.au/news/2015-03-17/linc-energy-accuse-failing-report-series-of-dangerous-leaks/6323850

6 Zeshan Hyder, 2012, Site Characterization, Sustainability Evaluation and Life Cycle Emissions Assessment of Underground Coal Gasification, PhD dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University

7 Muhammad Imran, Dileep Kumar, Naresh Kumar, Abdul Qayyum, Ahmed Saeed, Muhammad Shamim Bhatti, Environmental concerns of underground coal gasification, Renewable and Sustainable Energy Reviews, Volume 31, March 2014, Pages 600-610,

8 Eugeniusz Krause, Alicja Krzemień, Adam Smoliński, Analysis and assessment of a critical event during an underground coal gasification experiment, Journal of Loss Prevention in the Process Industries, Volume 33, January 2015, Pages 173-182